70 research outputs found

    Stase veineuse et croissance osseuse

    Get PDF
    Servelle Marceau, Simonnet Henri, Lebars H. Stase veineuse et croissance osseuse. In: Bulletin de l'Académie Vétérinaire de France tome 103 n°7, 1950. pp. 355-359

    New Capabilities of the FLUKA Multi-Purpose Code

    Get PDF
    FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration1. This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration2 under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cern) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results

    The Pixel Luminosity Telescope: a detector for luminosity measurement at CMS using silicon pixel sensors

    Get PDF
    The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022

    Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes

    Get PDF
    Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    A History of Clinical Transplantation

    Get PDF
    corecore